Monday, April 28, 2014

SpaceX Plans Multiple Tests for Rocket Reusability

While Space Exploration Technologies (SpaceX) and NASA monitored the Falcon 9 second stage as it powered a Dragon cargo spacecraft on the third cargo resupply (CRS-3) mission to the International Space Station (ISS) from Kennedy Space Center on April 18, another group of launch specialists was looking elsewhere. They were tracking the descent of the first stage to a controlled, gentle splashdown and demonstration of what they hope will clear the way for routine powered-booster recoveries on land.

The test was another step toward SpaceX's aim of fundamentally reducing launch costs by employing completely reusable rocket boosters that can be quickly refueled for another flight without rebuild or refurbishment. To achieve this target, which could see the first test flight of a reused booster as early as 2015, the company plans to guide a discarded first stage to a powered landing at a yet-to-be-determined site along the Florida coastline this year.

While SpaceX remains coy about the exact fate of the modified Falcon 9 first stage, the overall results appear to be encouraging despite the apparent breakup of the booster after it landed in heavy seas. Additional encouragement comes from the successful first vertical launch and recovery test flight of the Falcon 9 Reusable (F9R) development unit 1 at SpaceX's rocket facility in McGregor, Texas, the day before the CRS-3 flight.

“We are starting to connect the dots,” says SpaceX CEO and chief designer Elon Musk, who confirmed on Twitter shortly after launch that the “landing in Atlantic was good.” The “dots” Musk refers to range from development and testing of specific guidance, navigation, control and landing technology using dedicated test vehicles such as the F9R Dev 1 and a scaled predecessor called the Grasshopper, to key tests of reusable technology during actual launches. However, Musk cautions that all the dots need to be joined before SpaceX can claim success: “To be reusable, it must be both rapid and complete, like an aircraft or a car.” Having to replace parts or refurbish stages between flights will defeat the object of saving costs. “The only thing that changes is reloading propellant and expendables, and the vehicle is designed for that,” he adds.

No comments: